Hybrid finite difference/finite element immersed boundary method

نویسندگان

  • Boyce E. Griffith
  • Xiaoyu Luo
چکیده

The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A p-th Degree Immersed Finite Element for Boundary Value Problems with Discontinuous Coefficients

In this manuscript we present a p-th degree immersed finite element method for solving boundary value problems with discontinuous coefficients. In this method, interface jump conditions are employed in the finite element basis functions, and the mesh does not have to be aligned with coefficient discontinuity. We show that under h refinement the immersed finite element solution converges to the ...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

Hybrid finite difference/finite element version of the immersed boundary method

The immersed boundary (IB) method is a framework for modeling systems in which an elastic structure is immersed in a viscous incompressible fluid. The IB formulation of such problems describes the elasticity of the structure in Lagrangian form and describes the momentum, viscosity, and incompressibility of the fluid-structure system in Eulerian form. Interactions between Lagrangian and Eulerian...

متن کامل

Numerical Simulation of Two-phase Flows Using a Hybrid Volume of Fluid and Immersed Boundary Method

In this paper a simulation model is presented for the Direct Numerical simulation (DNS) of multiphase flow. This method combines the Volume of fluid model and Immersed Boundary method in order to investigate water-oil flow-pattern. The simulations were carried out on structured cartesian adaptive mesh refinement (SAMR), where the the Immersed Boundary represents the circular tube via Direct For...

متن کامل

A boundary element/finite difference analysis of subsidence phenomenon due to underground structures

Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized (numerically) using the cubic displacement discontinuity elements (i.e. each highe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017